@article {15741,
	title = {Hydrogels in Acellular and Cellular Strategies for Intervertebral Disc Regeneration},
	journal = {Journal of Tissue Engineering and Regenerative Medicine},
	volume = {7},
	year = {2013},
	month = {2013-02-01 00:00:00},
	pages = {85-98},
	publisher = {WILEY-BLACKWELL},
	abstract = {

Low back pain is an extremely common illness syndrome that causes patient suffering and disability and
requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate
the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its
fine regulatory system, makes it a challenge to the scientific community. Biomaterials-based therapies are the
most interesting solutions to date, whereby tissue engineering and regenerative medicine (TE\&RM) strategies
are included. By using such strategies, i.e., combining biomaterials, cells, and biomolecules, the ultimate goal of
reaching a complete integration between native and neo-tissue can be achieved. Hydrogels are promising
materials for restoring IVD, mainly nucleus pulposus (NP). This study presents an overview of the use of
hydrogels in acellular and cellular strategies for intervertebral disc regeneration. To better understand IVD
and its functioning, this study will focus on several aspects: anatomy, pathophysiology, cellular and biomolecular\ performance, intrinsic healing processes, and current therapies. In addition, the application of hydrogels as NP\ substitutes will be addressed due to their similarities to NPmechanical properties and extracellular matrix. These\ hydrogels can be used in cellular strategies when combined with cells from different sources, or in acellular\ strategies by performing the functionalization of the hydrogels with biomolecules. In addition, a brief summary\ of therapies based on simple injection for primary biological repair will be examined. Finally, special emphasis will\ focus on reviewing original studies reporting on the use of autologous cells and biomolecules such as platelet-rich\ plasma and their potential clinical applications.

}, keywords = {intervertebral disc, Tissue engineering}, issn = {1932-6254}, doi = {10.1002/term.500}, url = {http://onlinelibrary.wiley.com/doi/10.1002/term.500/abstract}, author = {Pereira, D. R. and Silva-Correia, J. and Oliveira, J. M. and Reis, R. L.} }

Back to top