@article {18600,
	title = {Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein{\textendash}peptide system},
	journal = {Nature Chemistry},
	volume = {7},
	year = {2015},
	month = {2015-09-28 00:00:00},
	pages = {897{\textendash}904},
	publisher = {Nature},
	abstract = {

Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.

}, keywords = {Bioinspired materials, Biomedical materials, Molecular self-assembly}, issn = {1755-4330}, doi = {10.1038/nchem.2349}, url = {http://www.nature.com/nchem/journal/v7/n11/full/nchem.2349.html}, author = {Inostroza-Brito, K. E. and Collin, E. and Siton-Mendelson, O. and Smith, K. H. and Monge-Marcet, A. and Ferreira, D. S. and Rodr{\'\i}guez, R. P. and Alonso, M. and Rodr{\'\i}guez-Cabello, J. C. and Reis, R. L. and Sagu{\'e}s, F. and Botto, L. and Bitton, R. and Azevedo, H. S. and Mata, A.} }

Back to top