Biomaterials, Biodegradables and Biomimetics Research Group

Papers in Scientific Journals

Preparation and characterization of water-soluble C60/Silk fibroin nanocomposite for cartilage regeneration application

Abstract

Objectives: Studies have showed the role of water-soluble C60 in protection of
articular cartilage against progression of osteoarthritis. Silk fi broin based scaffolds
also have been explored in cartilage or bone tissue engineering for years.
Among them, aqueous derived silk fi broin scaffolds prepared via salt-leaching
approach acted as promising candidates in tissue engineering application.
However, salt-leached silk fi broin scaffolds derived from highly concentrated
aqueous silk fi broin solutions haven’t been reported. In this study, the aim is
to prepare aqueous derived salt leached silk fi broin scaffolds with improved
mechanical properties. Furthermore, these novel scaffolds will combine with
water-soluble C60 to generate nanocomposites for cartilage regeneration.
Methods: Silk fi broin was fi rstly extracted from silkworm Bombyx mori by
degumming in sodium carbonate solution. And then, the silk fi broin was dissolved
in lithium bromide solution and dialyzed against distilled water. By its
turn, concentrated silk fi broin solution was achieved by dialysis against
poly(ethylene glycol) solution. Salt-leached silk fi broin porous scaffolds were
prepared by the addition of sodium chloride particles into the silk fi broin solution.
Water-soluble C60 was prepared via acid treatment and subsequent methacrylation
[1]. The morphology, microstructure, mechanical properties and the
cytotoxicity properties of the silk fi broin scaffolds. The modifi ed C60 was characterized
by FTIR and NMR. Results: The mechanical properties of the silk
fi broin scaffolds improved dramatically when prepared with high concentration
silk fi broin solutions. The FTIR and NMR spectra showed that the carboxyl
group and methacrylate group was successfully grafted with C60. Conclusions:
A novel salt-leached silk fi broin scaffold was generated via using highly
concentrated silk fi broin solutions. The water-soluble C60 can be prepared via
chemical modifi cation. It is expected that the preparation of water-soluble C60/
silk nanocomposite could bring new insights in cartilage regeneration.

Journal
The International Journal of Artificial Organs
Volume
34
Issue
8
Pagination
A90
ISSN
1525-1594
Keywords
cartilage, Silk Fibroin
Rights
Open Access
Peer Reviewed
Yes
Status
published
This website uses cookies. By using this website you consent to our use of these cookies. For more information visit our Policy Page.