Biomaterials, Biodegradables and Biomimetics Research Group

Papers in Scientific Journals

Combining Biomimetic Principles from the Lotus Leaf and Mussel Adhesive: Polystyrene Films with Superhydrophobic and Adhesive Layers

Abstract

Lotus leaves are well known for their extremely water repellent surfaces. Marine mussels are also a popular research topic when considering biological adhesives. Both organisms have inspired the development of several biomimetic materials. Herein we describe a two-sided film made almost entirely from polystyrene onto which the properties of both lotus leaves and mussel adhesive are incorporated. On one side of the film, imparting micrometer and nanometer scale hierarchical roughness yields superhydrophobicity and water repellency, which facilitates rapid fluid flow. The other side of the film is modified with a copolymer mimic of 3,4-dihydroxyphenylalanine (DOPA)-containing mussel adhesive proteins. This copolymer incorporates 3,4-dihydroxystyrene, to represent DOPA, randomly into a polystyrene host polymer. The flexibility of the polystyrene backing film enabled rolling of the assembly into a tubular shape. Inside the polystyrene tube was the superhydrophobic lotus mimic. The mussel adhesive mimic, on the outer layer, was used to glue the tube to itself, thus maintaining the tubular shape. The film was also successfully glued to a variety of flat substrates. These two-dimensional and three-dimensional assemblies can be used to direct and localize the flow of fluids, with partitioning between superhydrophobic and relatively hydrophilic regions. Such assemblies may facilitate the design of liquid transport for industrial and biomedical devices.

Journal
RSC Advances
Volume
3
Issue
24
Pagination
9352-9356
Publisher
The Royal Society of Chemistry
URL
http://pubs.rsc.org/en/content/articlelanding/2013/RA/C3RA40715B
Keywords
Bioinspired, Biomimetic coatings
Rights
Restricted Access
Peer Reviewed
Yes
Status
published
Year of Publication
2013
DOI
10.1039/C3RA40715B
Date Published
2013-04-08
Search Google ScholarGenerate BibTexDownload RTF
This website uses cookies. By using this website you consent to our use of these cookies. For more information visit our Policy Page.