Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality.

last updated: 2014-12-10
TitleOsteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality.
Publication TypePapers in Scientific Journals
Year of Publication2010
AuthorsMartins A., Duarte A. R. C., Faria S., Marques A. P., Reis R. L., and Neves N. M.

Electrospun structures were proposed as scaffolds owing to their morphological and structural simi- larities with the extracellular matrix found in many native tissues. These fibrous structures were also proposed as drug release systems by exploiting the direct dependence of the release rate of a drug on the surface area. An osteogenic differentiation factor, dexamethasone (DEX), was incorporated into elec- trospun polycaprolactone (PCL) nanofibers at different concentrations (5, 10, 15 and 20 wt.% polymer), in a single-step process. The DEX incorporated into the polymeric carrier is in amorphous state, as deter- mined by DSC, and does not influence the typical nanofibers morphology. In vitro drug release studies demonstrated that the dexamethasone release was sustained over a period of 15 days. The bioactivity of the released dexamethasone was assessed by cultivating human bone marrow mesenchymal stem cells (hBMSCs) on 15 wt.% DEX-loaded PCL NFMs, under dexamethasone-absent osteogenic differentiation medium formulation. An increased concentration of alkaline phosphatase and deposition of a mineral- ized matrix was observed. Phenotypic and genotypic expression of osteoblastic-specific markers corroborates the osteogenic activity of the loaded growth/differentiation factor. Overall data suggests that the electrospun biodegradable nanofibers can be used as carriers for the sustained release of growth/differentiation factors relevant for bone tissue engineering strategies.

Date Published2010-06-14
KeywordsBone Tissue Engineering, Drug release, mesenchymal stem cells, Molecular biology, polycaprolactone
Peer reviewedyes

Back to top