Gellan Gum Hydroxyapatite Composite Hydrogels for Bone Tissue Engineering

last updated: 2018-02-06
TitleGellan Gum Hydroxyapatite Composite Hydrogels for Bone Tissue Engineering
Publication TypePapers in Scientific Journals
Year of Publication2018
AuthorsManda-Guiba G. M., da Silva L. P., Cerqueira M. T., Pereira D. R., Oliveira M. B., Mano J. F., Marques A. P., Oliveira J. M., Correlo V. M., and Reis R. L.
Abstract

Osteoinductive biomaterials represent a promising approach to advance bone grafting. Despite promising, the combination of sustained biodegradability, mechanical strength, and biocompatibility in a unique biomaterial that can also support cell performance and bone formation in vivo is demanding. Herein, we developed gellan gum (GG)-hydroxyapatite (HAp) spongy-like hydrogels to mimic the organic (GG) and inorganic (HAp) phases of the bone. HAp was successfully introduced within the GG polymeric networks, as determined by FTIR and XRD, without compromising the thermostability of the biomaterials, as showed by TGA. The developed biomaterials showed sustained degradation, high swelling, pore sizes between 200 and 300 μm, high porosity (>90%) and interconnectivity (<60%) that was inversely proportional to the total polymeric amount and to CaCl2 crosslinker. CaCl2 and HAp reinforced the mechanical properties of the biomaterials from a storage modulus of 40 KPa to 70-80 KPa. This study also showed that HAp and CaCl2 favored the bioactivity and that cells were able to adhere and spread within the biomaterials up to 21 days of culture. Overall, the possibility to tailor spongy-like hydrogels properties by including calcium as a crosslinker and by varying the amount of HAp will further contribute to understand how these features influence bone cells performance in vitro and bone formation in vivo.

JournalJ Biomed Mater Res A
Volume106
Issue2
Pagination479–490
Date Published2018-02-06
PublisherSociety for Biomaterials
ISSN1552-4965
DOI10.1002/jbm.a.36248
URLhttps://www.ncbi.nlm.nih.gov/pubmed/28960767
KeywordsBone Tissue Engineering, Gellan Gum, hydroxyapatite, spongy-like hydrogels
RightsclosedAccess
Peer reviewedyes
Statuspublished

Back to top