Biomaterials, Biodegradables and Biomimetics Research Group

Papers in Scientific Journals

Wearable Collector for Noninvasive Sampling of SARS-CoV-2 from Exhaled Breath for Rapid Detection

Abstract

Airborne transmission of exhaled virus can rapidly spread, thereby increasing disease progression from local incidents to pandemics. Due to the COVID-19 pandemic, states and local governments have enforced the use of protective masks in public and work areas to minimize the disease spread. Here, we have leveraged the function of protective face coverings toward COVID-19 diagnosis. We developed a user-friendly, affordable, and wearable collector. This noninvasive platform is integrated into protective masks toward collecting airborne virus in the exhaled breath over the wearing period. A viral sample was sprayed into the collector to model airborne dispersion, and then the enriched pathogen was extracted from the collector for further analytical evaluation. To validate this design, qualitative colorimetric loop-mediated isothermal amplification, quantitative reverse transcription polymerase chain reaction, and antibody-based dot blot assays were performed to detect the presence of SARS-CoV-2. We envision that this platform will facilitate sampling of current SARS-CoV-2 and is potentially broadly applicable to other airborne diseases for future emerging pandemics.

Journal
Acs Applied Materials & Interfaces
Volume
13
Issue
35
Pagination
41445–41453
Publisher
American Chemical Society
ISSN
1944-8252
URL
https://pubs.acs.org/doi/10.1021/acsami.1c09309
Keywords
airborne, noninvasive, sampling, SARS-CoV-2, virus, wearable
Rights
Restricted Access (2 Years)
Peer Reviewed
Yes
Status
published
Year of Publication
2021
DOI
10.1021/acsami.1c09309
Date Published
2021-08-24
Search Google ScholarGenerate BibTexDownload RTF
This website uses cookies. By using this website you consent to our use of these cookies. For more information visit our Policy Page.